

0 May - 3 June 2022 Lyon, France

Towards an Optimized Management of Accidents

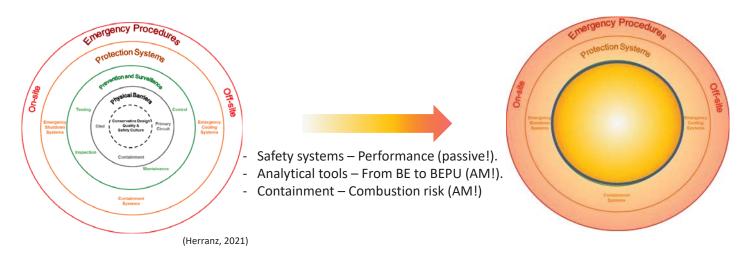
Luis E. Herranz (CIEMAT, Spain)

Gonzalo Jiménez (UPM, Spain) Francesco S. Nitti (ENEA, Italy)

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

CONTENTS

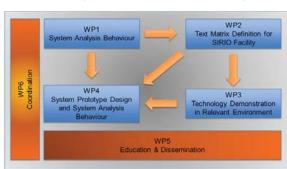
- Motivation
- The PIACE Project
- The MUSA Project
- The AMHYCO Project
- Final Remarks



Motivation

• Research on accidents: Deep-down in the roots of the DiD concept.

EURATOM commitment to research on Nuclear Power Plants safety!



10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

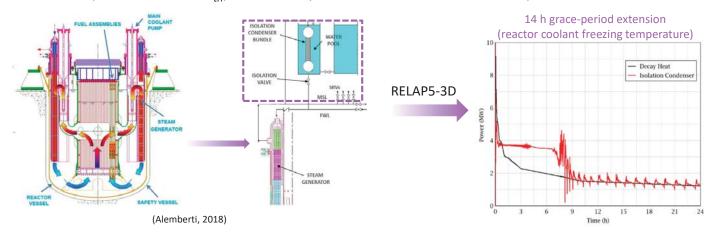
The PIACE Project

Overview

- Passive Isolation Condenser (PIACE). H2020 GA nº 847715 (400 p-m).
- Aim: To demonstrate the feasibility of a passive innovative Decay Heat Removal (DHR) system.
 - Design assessment
 - Feasibility testing (SIRIO facility)

(LW & LMRs)

• Extension: 2019 – 2022.

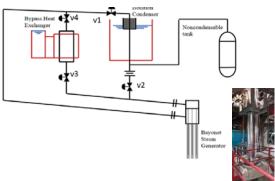

Partners: ANN, EAI, ENEA, GEN ENERGIJA, JSI, RATEN, SCK-CEN, SIET, SINTEC, TRACTEBEL, UPM

The PIACE Project

Preliminary Results

• LMRs (ALFRED, 200 MW_{th}) – A PLOOP (Protected Loss Of Offsite Power)

Other transients modeled for MHYRRA, PWR (2000 MW_{th}), ESBWR, ...



10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France .

The PIACE Project

Preliminary Results

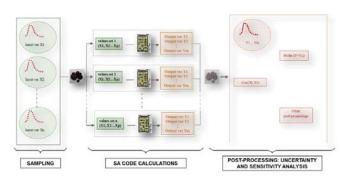
Testing in SIRIO facility

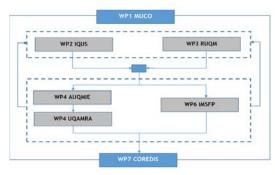
SIRIO facility upgrading needs and test matrix of each reactor technology

LFR, PWR and BWR are selected for test campaign amatrix of each reactor

		(SIRIO as it is)	ADS		PWR		BWR		PHWR	
			Proposal 1	Proposal 2	Proposal 1	Proposal 2	Proposal 1	Proposal 2	Proposal 1	Proposal 2
	Layout & components modifications required	None	Direct connection of the non- condensable tank to the HX upper header		Heat transfer surface of HX increased by a factor 1.82	Heat transfer surface of HX increased by a factor 1.82	Extra vessel on Steam line.	None	Modification of the diameters of the most piping of the loop	
						Gas Tank volume increased by a factor 1.2	6" x 5,86 m			
П	Operation parameters									
!	Power [kW]	55	28.3	3.25	55	55	55	110	30	55
	Pressure primary circuit [bar]	180	16.0	16.0	60	60	72.52	72.52	46	46
П	Pressure gas tank [bar]	110	12	12	50	50	50	69	30	30
ı	Water inventory [kg]	38	38	50.7	38	38	57.1	57.1	38	38

The test campaign on LFR Technology already ongoing.





The MUSA Project

Overview

- <u>M</u>anagement and <u>U</u>ncertainties of <u>Severe Accidents</u>). H2020 GA nº 847441 (625 p-m).
- Aim: To quantify uncertainties in SA codes' predictions, AM included (FOM: Source Term).

(Gen. II & III; SFPs)

- **Extension:** 2019 2023.
- Partners: Bel V, CEA, CIEMAT, CNPRI, CNSC, ENEA, Energorisk, EPRI, Framatome, GRS, INRNE, IRSN, JAEA, JACOBS, JRC, KAERI, KIT, LEI, LGI, NINE, PSI, SSTC, Tractebel, TUS, UNIPI, UNIRM1, USNRC, VMU, VTT

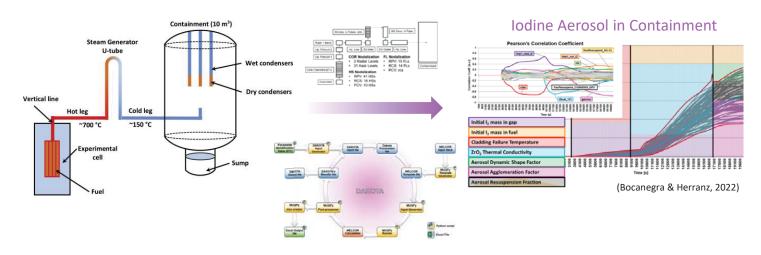
10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

7

The MUSA Project

Preliminary Results

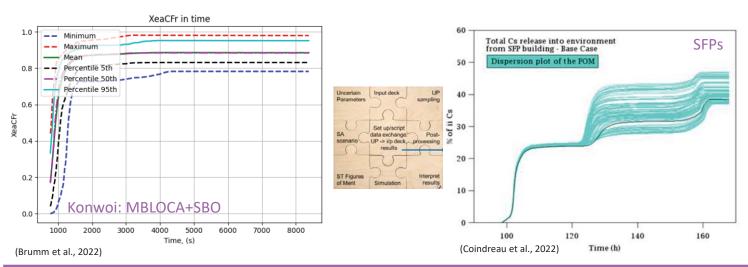
On input-deck uncertainties


Phenomena	Uncertain Parameter	reference value	lower bound	upper bound	pdf	reference
Sedimentation	Gas viscosity [kg/ms]	1.0 / N/A	-5% / N/A	+5% / N/A	Uniform	Expert Judgment
		N/A	N/A	N/A	N/A	N/A
		1.55E+07 / N/A			Normal	Expert Judgment
	Gas mean free path	N/A	N/A	N/A	N/A	N/A
	Particle diameter Lower Bound [m]	0,00000011	0,00000001	0,0000002	Triangular	1986 Helton et al. "Uncertainty and Sensitivity Analysis of a Model for Multicomponent Aerosol Dynamics"; 2009 NEA/CSNI. "State-of-the- Art Report on Nuclear Aerosols"
	Particle diameter Upper Bound [m]	0,000,0	0,00005		Triangular	1986 Helton et al. "Uncertainty and Sensitivity Analysis of a Model for Multicomponent Aerosol Dynamics"; 2009 NEA/CSNI. "State-of-the- Art Report on Nuclear Aerosols"
	Sito factor (default = 1,257)	1.257			Triangular	1990 D. J. Rader. "Momentum slip correction factor for small particles in nine common gases"; MELCOR Default; Expert judgment (pdf)

The MUSA Project

Preliminary Results

On PHEBUS-FPT1 modeling

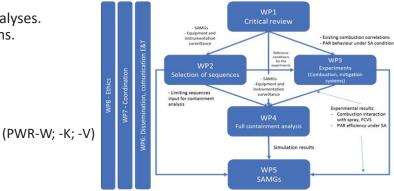


10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France (

The MUSA Project

Preliminary Results

On Reactor & SFP calculations



The AMHYCO Project

Overview

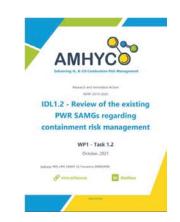
- Towards an Enhanced AM of the H_2/CO Combustion Risk (AMHYCO). H2020 GA nº 847715 (490 p-m).
- Aim: To further minimize the threat posed by combustible gases by SAMGs.
 - Methodologies for containment analyses.
 - Experiments on unexplored domains.

Extension: 2020 – 2024

Partners: CIEMAT, CNL, CNRS, ENERGORISK, FRAMATOME, FZJ, IJS, IRSN, LGI, NRG, RUHR, UPM.

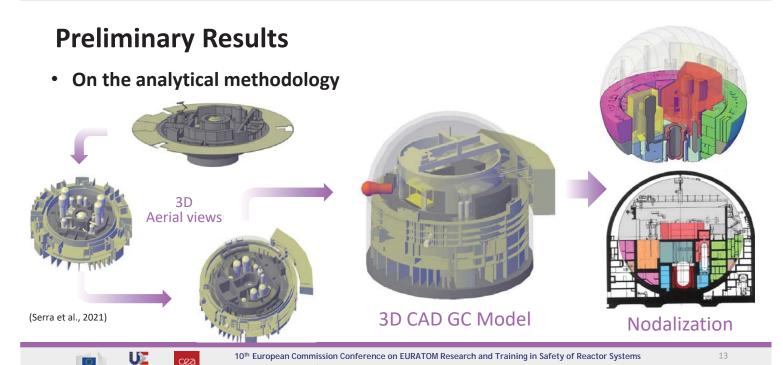
10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

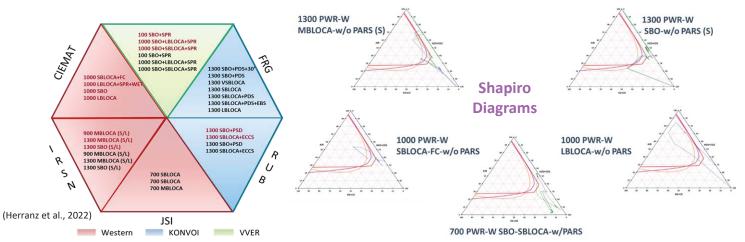
The AMHYCO Project


Preliminary Results

Critical review of the current status (completed & embedded in D1.1)

ID1.1 - Overview on PAR behavior in SA late phases conditions WP1 - Task 1.1


- Unclear transition H2-CO recomb. regimes.
- CO poissoning; T,P; Pt vs. Pd; deactivation
- H₂O y CO₂ effect (P>1 bar)
- Mitigation means designed JUST in-vessel
- No monitoring of CO in containment


The AMHYCO Project

The AMHYCO Project

Preliminary Results

Accident sequences DB already simulated.

Final Remarks

Accurate Risk Assessments

Robust Accident Management

 10^{th} European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

15

Final Remarks

- PIACE: On the demonstration of an innovative, technology-independent DHR system. Challenges: applicability; scalability; testing.
- MUSA: On the uncertainty quantification of SA predictions.
 Challenges: Systematic analytical methodology; data analysis.
- AMHYCO: On the optimization of SAMGs to handle combustion risk in SA.

 Challenges: Systematic analytical methodology; testing; assimilation.

Thank you for your attention!

Acknowledgements

The authors are indebted to their project partners, who have been doing an extraordinary job under truly adverse circumstances, and to the EC for approving, supporting and monitoring these projects.

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

ERMSAR 2024

- ERMSAR 2022 KIT, Karlsruhe An astonishing success!
- ERMSAR 2024 KTH, Stockholm (Sweden)https://www.kth.se/en
- Rooms available in the main campus or AlbaNova University https://www.albanova.se/
- Mid-May, 2024 currently considered (3 full days).

